女,汉族,山东临沭人。
教授,博士生导师。
联系方式
办公地点:南京市文苑路9号南京邮电大学仙林校区材料学科楼5-316室
Email:iamhxin@njupt.edu.cn
联系方式 办公地点:南京市文苑路9号南京邮电大学仙林校区材料学科楼5-316室 Email:iamhxin@njupt.edu.cn 受教育经历 2000, 09-2003, 07 北京大学,化学与分子工程学院,无机化专业博士研究生,理学博士; 1991, 09-1994, 08 华东师范大学,化学系,无机化学专业硕士研究生,理学硕士; 1987, 09-1991, 08 烟台师范学院,化学系,本科生,理学学士; 工作经历 2015.06-至今,南京邮电大学信息材料与纳米技术研究院/材料科学与工程学院,高层次引进人才,教授,博士生导师 2012.01-2015.05, 美国华盛顿大学,化工系,研究员 2010.03-2011.12, 美国华盛顿大学,化工系,讲师 2006.12-2010.03, 美国华盛顿大学,化工系,研究助理 2006.08-2006.12日本北路先端科学技术大学院大学, 日本学术振兴会 (Japan Society for the Promotion of Science, JSPS) 研究员 2003.10-2006.08日本国立物质材料研究机构(NIMS), 日本科学技术振兴机构 (Japan Science and Technology Agency, JST) 战略创造研究推进事业 (CREST) 研究员 1997, 09-2000, 09 青岛化工学院,讲师 1994, 09-1997, 08 青岛染料研究所,助理工程师; 研究方向 (1)铜基化合物薄膜太阳能电池。包括铜锌锡硫(CuZnSnS4, CuZnSnSe4, CuZnSn(S,Se)4 CZTS)和铜铟镓硒(CuIn(Ga)Se4, CIGS)薄膜太阳能电池。 (2)钙钛矿太阳能电池。 (3)叠层太阳能电池。包括钙钛矿/钙钛矿和钙钛矿/铜基化合物叠层电池。 主要研究项目 (1)科技部重点研发计划政府间国际科技创新合作重点专项,“制约铜锌锡硫太阳能电池性能的关键缺陷及其作用机制研究”,编号2019YFE0118100,2020年12月至 2023年 11月,259.00万元,项目负责人,在研。 (2)国家自然科学基金,“DMF溶液法制备高效铜铟镓硒薄膜太阳能电池:富铜吸光材料的碱金属离子掺杂和表面后处理研究”,编号22075150,2021年1月-2024年12月,63万元,项目负责人,在研。 (3)国家自然科学基金委员会,NSFC-云南联合基金,“以云南特有金属为组元的铜基锌黄锡矿结构化合物薄膜太阳电池高效光电转换机制研究”,编号U1902218,2020年01月至 2023年 12月,223.00万元,课题负责人,在研。 (4)国家自然科学基金,“高效铜锌锡硫薄膜太阳能电池:由DMSO前驱体溶液到半导体膜材料的化学反应路径研究”,编号21571106,2016年1月-2018年12月,71万元,项目负责人,已结题。 (5)南京邮电大学引进人才科研启动基金,“铜锌锡硫薄膜太阳能电池”,编号NY215001,2015年7月-2018年6月,200万元,项目负责人,已结题。 (6)江苏省自然基金面上项目:“溶液法制备高效铜锌锡硫薄膜太阳能电池”编号:BK20161514,10万元,2016年7月-2019年6月,项目负责人,已结题。 主要学术成绩 近几年来在包括Journal of the American Chemical Society, Energy Environment Science, ACS Nano, Advanced Energy Materials, Nano Energy, Chemistry of Materials, Journal of Materials Chemistry, Chemistry-A European Journal, Inorganic Chemistry, Macromolecules, Physical Chemistry Chemical Physics, Journal of Physical Chemistry B, Applied Physics Letters等在内的国内外知名学术期刊发表SCI论文50余篇,他人引用次数超过3200次。单篇引用次数超过100的13篇。H因子为29。授权国际专利一项,日本专利两项,中国专利6项,PCT一项。 代表性论文 1. Gong, Y.; Zhang, Y.; Zhu, Q.; Zhou, Y.; Qiu, R.; Niu, C.; Yan, W.*; Huang, W. and Xin, H.*“Identify the origin of the Voc deficit of kesterite solar cells from the two grain growth mechanisms induced by Sn2+ and Sn4+ precursors in DMSO solution” Energy Environ. Sci., 2021, DOI: 10.1039/D0EE03702H. 2. Gong, Y.; Zhang, Y.; Jedlicka, E.; Giridharagopal, R.; Clark, J. A.; Yan, W.; Niu, C.; Qiu, R.; Jiang, J.; Yu, S.; Wu, S.; Hillhouse, H. W.; Ginger, D. S.; Huang, W.; Xin, H.*, “Sn4+ precursor enables 12.4% efficient kesterite solar cell from DMSO solution with open circuit voltage deficit below 0.30 V. Science China-Materials” 2021, 64 (1), 52-60. 3. Wang, Z.; Lu, D.; Jiang, J.; Yan, W.; Gong, Y.; Wu, S.; Zhang, Y.; Huang, W.; Xin, H.*, “In Situ Formation of Ag2MoO4 in a Ag/MoO3 Buffer Layer Enables Highly Efficient Inverted Perovskite Cell for a Tandem Structure. Acs Applied Energy Materials” 2020, 3 (10), 9742-9749. 4. Chen, J. H.; Tang, C. C.; Guo, S. G.; Wang, Z. L.; He, Z. X.; Hwang, Y.-J.; Yan, W. B.; Xin, H. and Huang W.** “High crystalline small molecule manipulates polymer-fullerene morphology and enables 20% improvement in fill factor and device performance,”Organic Electronics, 2020, 77, 105419. 5. Jiang, J. J.; Giridharagopal, R.; Jedlicka, E.; Sun, K. W.; Yu, S. T.; Wu, S. P.; Gong, Y. C.; Yan, W. B.; Ginger, D. S.*; Green, M. A.; Hao, X. J.*; Huang, W. and Xin, H.* “Highly Efficient Copper-Rich Chalcopyrite Solar Cells from DMF Molecular Solution”Nano Energy 2020, 69, 104438. 6. Wu, S. P.; Jiang, J. J; Yu, S. T.; Gong, Y. C.; Yan, W. B.; Xin, H.* and Huang, W. “Over 12% efficient low-bandgap CuIn(S,Se)2 solar cells with the absorber processed from aqueous metal complexes solution in air” Nano Energy 2019, 62, 818-822. 7. Yu, S. T.; Gong, Y. C.; Jiang, J. J; Wu, S. P.; Yan, W. B.*; Li, X. A.; Huang, W. and Xin, H.* “Over 10% Efficient CuIn(S,Se)2 Solar Cells Fabricated From Environmentally Benign Solution in Air” Solar RRL, 2019, 1900052. 8. Yan, W.; Wang, Z.; Gong, Y.; Guo, S.; Jiang, J.; Chen J.; Tang, C.; Xia, R.; Huang, W.;∗Xin, H.* “Naphthalene-diimide selenophene copolymers as efficient solutionprocessable electron-transporting material for perovskite solar cells” Organic Electronics, 2019, 67, 208-214. 9. Xin, H*, Yan W. and Jenekhe S. A* “Color-Stable White Organic Light-Emitting Diodes Utilizing a BlueEmitting Electron-Transport Layer”ACS Omega, 2018, 3, 12549−12553. 10. Jiang, J. J.; Yu, S. T.; Gong, Y. C.; Yan, W. B.; Zhang, R.; Liu, S. J.; Huang, W. and Xin, H.*, “10.3% Efficient CuIn(S,Se)2 Solar Cells from DMF Molecular Solution with the Absorber Selenized under High Argon Pressure” Solar RRL, 2018, 1800044. 11. Yan, W.; Wang, Z.; Gong, Y.; Guo, S.; Jiang, J.; Chen, J.; Tang, C.; Xia, R.; Huang, W.*; Xin, H*. “Naphthalene-diimide selenophene copolymers as efficient solution-processable electron-transporting material for perovskite solar cells,” Organic Electronics. 2019, 67, 208-214. 12. Yan, W.; Rao, H.; Wei, C.; Liu, Z.; Bian, Z.; Xin, H.*; Huang, W*. “Highly efficient and stable inverted planar solar cells from (FAI)x(MABr)1−xPbI2 perovskites,” Nano Energy 2017, 35, 62-70,. 13. Xin, H.; Katahara, J. K.; Braly I. L. and Hillhouse, H. W. “8% Efficient Cu2ZnSn(S,Se)4 Solar Cells from Redox Equilibrated Simple Precursors in DMSO,” Adv. Energy Mater. 2014, DOI10.1002/aenm.201301823. 14. Xin, H.; Guo, X.; Ren, G.; Watson, M. D.; Jenekhe, S. A. “Efficient Phthalimide Copolymer-Based Bulk Heterojunction Solar Cells: How the Processing Additive Influences Nanoscale Morphology and Photovoltaic Properties,” Adv. Energy Mater. 2012, 2, 575-582. 15. Xin, H; Subramaniyan, S.; Kwon, T-W.; Shoaee, S.; Durrant, J. R; Jenekhe, S. A. “Enhanced Open Circuit Voltage and Efficiency of Donor-Acceptor Copolymer Solar Cells by Using Indene-C60 Bisadduct,” Chem. Mater. 2012, 24, 1995-2001. 16. Xin, H.; Reid, O. G.; Ren, G.; Kim, F. S.; Ginger, D. S.; Jenekhe, S. A. “Polymer Nanowire/Fullerene Bulk Heterojunction Solar Cells: How Nanostructure Determines Photovoltaic Properties,” ACS Nano, 2010, 4, 1861-1872. 17. Xin, H.; Kim, F. S.; Jenekhe, S. A. “Highly efficient solar cells based on poly(3-butylthiophene) nanowires,” J. Am. Chem. Soc. 2008, 130,5424-5425. 18. Xin, H.; Ren, G.; Kim, F. S.; Jenekhe, S. A. “Bulk Heterojunction Solar Cells from Poly(3-butylthiophene)/Fullerene Blends: In Situ Self-Assembly of Nanowires, Morphology, Charge Transport, and Photovoltaic Properties,” Chem. Mater. 2008, 20, 6199-6207. 19. Geng, F.; Xin, H. (Co-first coauthor); Matsushita, Y.; Ma, R.; Tanaka, M.; Izumi, F.; Iyi, N.; Sasaki, T. “New layered rare-earth hydroxides with anion-exchange properties,” Chem. Eur. J. 2008, 14, 9255-9260. 20. Xin, H.; Ebina, Y.; Ma, R.; Takada, K.; Sasaki, T. “Thermally stable luminescent composites fabricated by confining rare earth complexes in the two-dimensional gallery of titania nanosheets and their photophysical properties,” J. Phys. Chem. B. 2006, 110, 9863-9868. 21. Xin, H.; Ma, R.; Wang, L.; Ebina, Y.; Takada, K.; Sasaki, T. “Photoluminescence Properties of Lamellar Aggregates of Titania Nanosheets Accommodating Rare Earth Ions,” Appl. Phys. Lett. 2004, 85, 4187-4189. 22. Xin, H.; Shi, M.; Gao, X. C.; Huang, Y. Y.; Gong, Z. L.; Nie, D. B.; Cao, H.; Bian, Z. Q.; Li, F. Y.; Huang, C. H. “The Effect of Different Neutral Ligands on Photoluminescence and electroluminescence Properties of Ternary Terbium Complexes,” J. Phys. Chem. B. 2004, 108, 10796-10800. (IF = 3.302) 23. Xin, H.; Li, F. Y.; Bian, Z. Q.; Huang, C. H. “Efficient Electroluminescence from a New Terbium Complex,” J. Am. Chem. Soc. 2003, 125, 7166-7167. (IF = 12.113) 24. Xin, H.; Shi, M.; Li, F. Y.; Zhang, X. M.; Bian, Z. Q.; Ibrahim, K.; Liu, F. Q.; Huang, C. H. “Carrier-Transport, Photoluminescence and Electroluminescence Properties Comparison of a Series Terbium Complex with Different Structure,” Chem. Mater. 2003, 15, 3728-3733. |