电话: 025-85866332
传真: 025-85866396
您当前的位置: 首页  师资队伍  专任教师  按职称分  教授(研究员)

高丽


    

     高丽,现任南京邮电大学柔性电子全国重点实验室教授,理学院常务副院长,博士研究生导师(光学工程、物理学),硕士(光学工程学硕、材料科学与工程学硕、电子信息专硕)

邮箱:iamlgao@njupt.edu.cn

课题组网站:https://iamlgao.cn/

 

教育与工作背景:

2005-2009 新加坡南洋理工大学 材料科学与工程 工程学士(一等荣誉)

2010-2014 美国伊利诺伊大学香槟分校 材料科学与工程 哲学博士(国家优秀自费留学生奖)

2015-2019 南京理工大学 电子工程与光电技术学院 教授

2019至今 南京邮电大学 材料学院/理学院/柔性电子全国重点实验室 教授

个人简介:

主要围绕光学超表面与二维光电器件的光电融合应用展开研究,发表Nat. Electron.Nat.  Commun.Sci. Adv.Adv. Mater.ACS Nano40余篇论文,其中应邀撰写综述论文6篇,获批中美专利12项。主持国家自然科学基金优秀青年基金、面上项目等4项、江苏省科技重大专项、省市联合项目课题各1项,作为核心骨干参与柔性电子基础科学中心、国家重点研发计划、区域联合重点项目等。担任美国光学学会Optical Materials Express副主编,Photonics Research客座编辑。目前是江苏省333工程第二层次培养对象、江苏省物理学会光学与原子分子专委会委员、南京邮电大学第五届学术委员会委员、民革南京邮电大学支部副主委、民革江苏省青年工作委员会委员、南京市栖霞区人大代表、人大常委、妇联执委。

主要研究方向:

1.  基于深度学习的计算光谱传感与成像

2.  超表面异质集成光电器件应用

3.   二维半导体异质结光电器件

4.   基于深度学习的纳米光子和二维材料设计方法

5.   低维光电耦合与载流子输运机制 

主要科研项目:

1.  高速低功耗二维材料光电集成芯片 2025-2027 课题负责人在研

2.  超表面异质集成二维材料红外光电成像芯片 2025-2028 项目骨干在研

3.  片上集成可调谐光源关键材料与器件基础 2024-2026 课题负责人在研

4.  高迁移率超薄半导体材料与高性能器件集成 2022-2027 课题骨干在研

5.  连续体束缚态电介质超表面的高效设计和计算传感方法研究 2024-2027主持在研

6.  柔性微纳结构与传感器件 2021-2023 主持结题

7.  柔性等离激元彩色显示的高效逆向设计和制备 2020-2023主持结题

8.  面向柔性彩色显示的镁等离激元器件研究 2019-2022 主持结题

9.   柔性等离激元对二维层状半导体光电性能的调控研究 2017-2019 主持结题

10. 可延展石墨烯的结构设计与器件制备基础研究 2016-2018 主持结题

部分一作/通讯代表性论文:

1.  Efficient energy transfer in a hybrid organic-inorganic van der Waals heterostructure. Science Advances 2025, 11, eadw3969.

2.  ReS2/MoSe2 Van der Waals Heterostructure Photodetectors for Polarization Imaging and Polarization-Encoded Optical Communication. Small 2025, 2503599.

3.  Graphene/h-BN/ReS2 Heterostructure Operating in Fowler−Nordheim Tunneling Regime for Polarization-Sensitive Fast Photodetector. Advanced Electronic Materials 2025, 2500001.

4.  Dielectric Metasurface Enhanced Performance in Multilayer WS2 Photodetector. Science China Information Sciences 68, 179403 (2025).

5.  Multifunctional Metasurface Coding for Visible Vortex Beam Generation, Deflection and Focusing, Nanophotonics 14(5), 647-656, 2025.

6.  Enhanced Performance and Long-term Stability of 2D Photodetectors through Hexagonal Boron Nitride Encapsulation. Applied Physics Letter 126(2), 023101, 2025.

7.  Snapshot Computational Spectroscopy Enabled by Deep Learning. Nanophotonics 13(22), 4159-4168, 2024.

8.  High Speed Photodetector Based on 2D Organic/Inorganic Hybrid van der Waals Heterostructure Devices. Laser & Photonics Review 18, 2400192, 2024.

9.  Fast and High-responsivity MoS2/MoSe2 Heterostructure Photodetectors Enabled by van der Waals Contact Interfaces. Applied Physics Letter 125(3), 033102, 2024.

10.  Hot-carrier Engineering for Two-dimensional Integrated Infrared Optoelectronics. InfoMat e12556, 2024.

11.  Controllable Memory Window in Two-dimensional Hybrid van der Waals Heterostructured Devices. Applied Physics Letter 124(17), 173103, 2024.

12.  Multi-mode Resonance of Bound States in the Continuum in Dielectric Metasurfaces. Optics Express 32(8), 14276, 2024.

13.  2-bit Coding Metasurface with a Double Layer Random Flip Structure for Wide Band Diffuse Reflection and Reciprocity Protected Transmission. Optics Express 31(20), 32253-32262, 2023.

14.  Plasmonic Nanostructure Characterized by Deep Neural Network Assisted Spectroscopy (invited). Chinese Optics Letter 21(1), 010004, 2023.

15.  Computational Spectrometers Enabled by nanophotonics and Deep Learning. Nanophotonics 11(11), 2507-2929, 2022.

16.  Deep learning in photonics: introduction. Photonics Research 9, DLP1-DLP3, 2021.

17.  Real-time Deep Learning Design Tool for Far-Field Radiation Profile. Photonics Research 9(4) B104-B108, 2021.

18.  Neural Network Enabled Metasurface Design for Phase Manipulation. Optics Express 29(2) 2521-2528, 2021.

19.  Graphene Hybrid Structures for Integrated and Flexible Optoelectronics. Advanced Materials 32(27), 1902039, 2020.

20.  A Bidirectional Deep Neural Network for Accurate Silicon Color Design, Advanced Materials 31(51), 1905467, 2019.

21.  Soft and Transient Magnesium Plasmonics for Environmental and Biomedical Sensing. Nano Research 11(8), 4390–4400, 2018.

22.  Flexible Device Applications of 2D Semiconductors. Small 13(35)16039942017.

23.  Optics and Nonlinear Buckling Mechanics in Large-Area, Highly Stretchable Arrays of Plasmonic Nanostructures. ACS Nano 9 (6), 5968–5975, 2015.

24.  Epidermal Photonic Devices for Quantitative Imaging of Temperature and Thermal Transport Characteristics of the Skin. Nature Communications 5, 4938, 2014.

25.  Nanoimprinting Techniques for Large-Area Three-Dimensional Negative Index Metamaterials with Operation in the Visible and Telecom Bands. ACS Nano 8(6), 5535-5542, 2014.

26.  Materials Selections and Growth Conditions for Large-Area, Multilayered, Visible Negative Index Metamaterials Formed by Nanotransfer Printing. Advanced Optical Materials 2(3), 256-261, 2014.